
EGC221
Class Notes
4/26/2023

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

Verilog – D Flip-flop
module D-flipflop (D, Clk, Q);

input D, Clk;

output Q; reg Q;

always @(posedge Clk)
Q = D;

Endmodule
D
CLK

Q~reg0
PRE

D Q

ENA

CLR

Q

Finite State Machines (FSM)
 State diagrams are representations of Finite State Machines (FSM)

 Mealy FSM
 Output depends on input and state

 Output is not synchronized with clock

 can have temporarily unstable output

 Moore FSM
 Output depends only on state

25

Mealy
FSM

Moore
FSM

Finite State Machines

• Finite State Machines (FSMs) are a useful abstraction for sequential
circuits with centralized “states” of operation

• At each clock edge, combinational logic computes outputs and
next state as a function of inputs and present state

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs
+

present
state

outputs
+

next
state

n n

Example: Light Switch

0/LIGHT
= 0

1/LIGHT
= 1

BUTTON=1

BUTTON=0 BUTTON=0

• State transition diagram
BUTTON=1

NSPS
LightQ & DButtonQ

0000
0110
1101
1011

D Q

Q

Q

Button

D = Q’B + QB’
Light = Q

Note: B = Button

Light

D Q LIGHTBUTTON
CLK

0

1

Register

Example: Light Switch

LIGHT
= 0

LIGHT
= 1

BUTTON=1

BUTTON=0 BUTTON=0

• State transition diagram

BUTTON=1

D Q LIGHTBUTTON
CLK

0

1

Combinational logic

Register

• Logic diagram

Clocked circuit for on/off button

output light; reg light;
always @ (posedge clk) begin

if (button) light <= ~light;

module onoff(clk,button,light);
input clk,button;

end
endmodule

D Q LIGHTBUTTON
CLK

0

1 Q
D

LE

CLK

LOAD-ENABLED REGISTERSINGLE GLOBAL CLOCK

Example: 4-bit Counter

+1

clk

count
44

• Logic diagram

4-bit counter
module counter(clk, count);

input clk;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin
count <= count+1;

End
endmodule

• Verilog

p

1

0

+1

enb clk

count
44

• Logic diagram

4-bit counter with enable
module counter(clk,enb,count);
input clk,enb;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin
count <= enb ? count+1 : count;

• Verilog

Could I use the following instead?
if (enb) count <= count+1;

end
endmodule

Example: 4-bit Counter

0 1
1

0
0

+1

enb clr clk

count
44

• Logic diagram

4-bit counter with enable and synchronous clear
module counter(clk,enb,clr,count);

input clk,enb,clr;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin
count <= clr ? 4’b0 : (enb ? count+1 : count);

end
endmodule

• Verilog

4-bit Shift Register with Reset
module srg_4_r_v (CLK, RESET, SI, Q,SO);
input CLK, RESET, SI;
output [3:0] Q;
output SO;
reg [3:0] Q;
assign SO = Q[3];
always@(posedge CLK or posedge RESET) begin
if (RESET)
Q <= 4'b0000;

else
Q <= {Q[2:0], SI};
end

endmodule

4-bit Binary Counter with Reset
module count_4_r_v (CLK, RESET, EN, Q, CO);
input CLK, RESET, EN;
output [3:0] Q;
output CO;
reg [3:0] Q;
assign CO = (count == 4'b1111 && EN == 1’b1) ? 1 : 0;
always@(posedge CLK or posedge RESET)
begin
if (RESET)
Q <= 4'b0000;
else if (EN)
Q <= Q + 4'b0001;
end

endmodule

You are to design a 4-bit counter with the following inputs and
functionality:
 Load (ld): if activated, count will be loaded from D_in [3:0]
 Mode: if 0, counter counts up. Otherwise, it will count down.
 Clear (clr): If activated, count will be 0
 Clock 1 Hz is generated from the previous exercise.

Complete the following code and implement it on the FPGA board.

Description FPGA Pin No. Signal Name
10 MHz clock input for ADC (Bank 3B) PIN_N5ADC_CLk_50
50 MHz clock input (Bank 3B) PIN_P11MAX10_CLK1_50
50 MHz clock input (Bank 3B) PIN_N14MAX10_CLK2_50

Device NameBoard
MAX 10:
10M50DAF484C7G

DE10-Lite

Pin Assignment

Exercise 1: Divide-by-N Circuit:

Design, simulate, and build a Divide-by-N circuit that will divide the on board clock from 50
MHz down to ~1 Hz. The basic principle is as follows:

//The goal of this always procedural block is to generate 1Hz clock from a
//50MHz clock that is used in the Altera FPGA board.
module Divide_by_50M_counter(clr,clk,clk_1Hz);
input clr,clk;
output clk_1Hz;
reg clk_1Hz =1'b0;
integer counter_50M =0;
always @(posedge clk, posedge clr)
begin
if (clr)

counter_50M <=0;
else if (counter_50M <25000000)
begin

counter_50M <= counter_50M + 1;
end

else if (counter_50M ==25000000)
begin

clk_1Hz <= !clk_1Hz;
counter_50M <=0;

end
end
endmodule

module up_down_counter(mode,clr,ld,D_in,clk,count,clk_1Hz);
input mode,clr,ld,clk;
input [3:0] D_in;
output clk_1Hz;
output [3:0] count;
reg [3:0] count;
reg clk_1Hz =1'b0;
integer counter_50M =0;

//If "ld =1" we load the external data through D_in[3:0], if mode is active
// it will be counting up and if mode is inactive it will count down.

always @(posedge clk_1Hz, posedge clr)

.

. if (clr)
count <=0;

else if (ld)
count <=

.
endmodule

